Promedio aritmético y geométrico Para obtener la tasa libre de riesgo, se obtiene un promedio histórico de las tasas. A nuestro parecer, este debe ser un promedio aritmético; sin embargo otros autores como Damodaran opinan lo contrario, pues recomiendan uno geométrico:
“The final sticking point when it comes to estimating historical
premiums relates to how the average returns on stocks, treasury bonds
and bills are computed. […]Conventional wisdom argues for the use of
the arithmetic average. In fact, if annual returns are uncorrelated over
time, and our objective were to estimate the risk premium for the next
year, the arithmetic average is the best unbiased estimate of the premium.
In reality, however, there are strong arguments that can be made for the
use of geometric averages. First, empirical studies seem to indicate that
returns on stocks are negatively correlated over time. Consequently, the
arithmetic average return is likely to over state the premium. Second,
while asset pricing models may be single period models, the use of these
models to get expected returns over long periods (such as five or ten
years) suggests that the single period may be much longer than a year. In
this context, the argument for geometric average premiums becomes even
stronger.”
[DAMODARANa, 1998: 180-181]
Aun cuando se trata de una posición respetable, otros autores coom ANNIN
[1998], BREALEY [2000], ERHARDT [1994] y ROSS [2002] se pronuncian a
favor de la utilización de promedios aritméticos:
“[…] the arithmetic mean should always be used in evaluating
projected cash flows. Therefore, the arithmetic mean should always be
used in calculating the value of business.
In SBBI, Ibbotson Associates provides both arithmetic and
geometric means for different asset classes. The equity risk premium that
is outlined in the publication is an arithmetic mean however. SBBI has a
number of different audiences including business appraisers, investment
analysts, and financial planners. Geometric means are presented because
they can be useful in analyzing historical performance
The argument for using the arithmetic average is quite straightforward.
In looking at projected cash flows, the equity risk premium that
should be employed is the equity risk premium that is expected to actually
be incurred over the future time periods. Using the geometric average
assumes that the equity risk premium will be the same for each and every
future time period. That is, the market benchmark will achieve the same
excess return over every future time period. We know that this is not the
case […] The arithmetic mean equates the expected future value with the
present value, therefore it is the appropriate discount rate.” [ANNIN, M.
& FALASCHETTI, D., 1998: 8-10]
Nosotros concordamos con la posición expuesta por la mayoría de los autores
citados. Consideramos el uso del promedio aritmético como la medida quemás nos
aproxima al rendimiento esperado para el inversionista promedio.
El promedio geométrico hallado en base a los retornos desde 1928 hasta 2003 nos
señala cual habría sido el rendimiento anual obtenido por un inversionista que
hubiese mantenido sus acciones en cartera durante 75 años.
Nosotros no creemos que ésta sea una conducta generalizable a la mayoría de los
inversionistas, y que por lo tanto, es más útil utilizar un promedio aritmético.
No hay comentarios:
Publicar un comentario