martes, 6 de agosto de 2013

Rendimiento total de un bono (Total Return) - II

Véase el siguiente ejemplo de cálculo:
Supuestos:
Madura en 25 años, cuando puede ser convertido
Tasa libre de riesgo Rf = 14.5% (tasa de bono del tesoro americano de 25 años)
Tasa del cupón del convertible Rc = 10%
Tasa de mercado Rb (a la que se descuenta un bono similar no convertible) = 17%
Precio de conversión S = $28 (por cada 1000 VN de bono se recibe 35.71 acciones)
Precio de la acción hoy P = $25
Retorno esperado del mercado E(Rm) = 20.6%. Se puede aproximar con la suma de la tasa de crecimiento real de la economía más un ajuste por la tasas de inflación esperado más un “precio del riesgo”

BETA (Acción ) = 1.5 (la de la acción a convertir)
Volatilidad de la acción = 30%
No hay dividendo y se convierte en bloque
La valuación requiere el uso de dos modelos: uno de valuación de opciones (Black-Scholes, modelo binomial, etc.) y el Capital Asset Pricing Model (CAPM), ya que
C = B + W,
El convertible es un bono común más un warrant, por lo que el costo del capital de un convertible será la suma ponderada del costo del bono y del warrant:
Kc = Kb * Q1 + Kw * Q2,
Donde Q1 corresponde a la porción del bono incluida en el convertible y Q2 a la del warrant:
Q1 = B / (B+W) Q2 = W / (B+W)
Para estimar B, simplemente descuento los cupones del convertible y su capital final de $1000 a ala tasa de mercado del 17%, lo que me da un valor presente del bono de:
B = 619.91, por lo que
W = 1000-B = 380.09
Por lo que Q1 = 61.991% Q2 = 38.009%
Conozco Kb = 17% en base pre-impuestos o 17% * (1-t) si le descuento los impuestos, por lo que el único dato faltante es Kw, el costo del capital del warrant
Para estimar Kw utilizo el CAPM, por lo que se puede aproximar dicho costo en base a la siguiente recta:
Kw = Rf + [E(Rm) – Rf] * BETA (warrant)
Se ha dicho que un warrant está perfectamente correlacionado con un call, en este caso con un call a 25 años el precio de ejercicio de 28 . Por lo tanto, restaría calcular el BETA del call mencionado. Esto puede hacerse considerando la siguiente fórmula:
BETA (Warrant) = BETA (call) = N(d1) * P/C * BETA (acción)
Donde d1 = {[ln (P/S) + Rf * T] / VOLAT * T)]}+ {1/2 VOLAT * T}
Donde T está expresado en años (aquí T = 25) y N(d1) es el valor correspondiente a la tabla de distribución normal acumulativa
C es el valor del call estimado por cualquier de los métodos descriptos.
Y un valor para d1 de
En este ejemplo se halló un valor el call de 24.74 y un valor para d1 de 3.09114, al que le corresponde un N(d1) de 0.999 por lo que
BETA (Warrant) = 25/24.74 * (0.999) * 1.5 = 1.514

No hay comentarios: